Dalam gerak melingkar terdapat dua jenis besaran fisika yang mempengaruhi gerak benda, yaitu besaran sudut anguler dan besaran linier tangensial. Lalu apa saja besaran-besaran sudut dan linear tersebut? Berikut ini adalah daftar besaran pada gerak melingkar yang sudah penulis rangkum dalam bentuk tabel. Tabel Besaran Anguler dan Besaran Tangensial pada Gerak Melingkar No. Besaran Sudut Anguler Besaran Linear Tangensial 1 Posisi sudut θ Panjang lintasan s 2 Kecepatan sudut Kecepatan linear v 3 Percepatan sudut α Percepatan tangensial at 4 Periode T Percepatan sentripetal as 5 Frekuensi f Jari-jari R Besaran sudut seperti posisi sudut, kecepatan sudut dan percepatan sudut merupakan besaran vektor. Sedangkan periode dan frekuensi adalah besaran skalar. Untuk besaran linear seperti kecepatan linear, percepatan tangensial dan percepatan sentripetal merupakan besaran vektor sedangkan panjang lintasan dan jari-jari merupakan besaran skalar. Berbicara mengenai vektor pasti tidak pernah lepas dengan arah gerak. Lalu tahukan kalian bagaimana arah besaran sudut dan linear tersebut pada gerak melingkar? Secara umum, untuk besaran sudut atau anguler, arahnya geraknya mengikuti arah gerak benda di sepanjang lintasan yang berbentuk lingkaran atau dengan kata lain ikut bergerak melingkar. Sedangkan untuk besaran linear atau besaran tangensial kecuali percepatan sentripetal arah geraknya selalu menyinggung lingkaran. Dengan kata lain arah gerak besaran tangensial selalu tegak lurus dengan jari-jari lingkaran. Untuk lebih jelasnya, silahkan perhatikan gambar berikut ini. Jika kalian sudah paham mengenai besaran sudut dan linear pada gerak melingkar, sekarang saatnya kita mempelajarai bagaimana hubungan antara besaran anguler dengan besaran tangensial pada gerak melingkar. Hubungan antara kedua besaran tersebut sangat penting dalam menentukan rumus turunan yang diperlukan untuk menyelesaikan persoalan fisika yang berkaitan dengan gerak melingkar. Untuk itu silahkan kalian simak penjelasan berikut ini. 1 Hubungan Antara Posisi Sudut θ dengan Panjang Lintasan s Gambar di atas menunjukkan partikel P bergerak melingkar dengan sumbu tetap O dan jari-jari R. Jika partikel P bergerak dari titik A ke titik B dengan menempuh lintasan busur sepanjang s, sedangkan posisi sudut yang terbentuk antara titik A dan titik B adalah θ, maka diperoleh hubungan rumus sebagai berikut θ = s ……………………… pers. 1 R Dari persamaan 1 kita bisa mendapatkan rumus panjang lintasan lingkaran sebagai berikut s = θR …………………… pers. 2 Keterangan θ = posisi sudut rad s = busur lintasan m R = jari-jari m Persamaan 2 tersebut merupakan rumus hubungan antara besaran sudut yaitu posisi sudut dengan besaran tangensial yaitu panjang lintasan/busur lintasan. Contoh Soal 1 Sebuah benda bergerak melingkar dengan jari-jari lingkaran yang dibentuknya 80 cm. Tentukan posisi sudut dalam satuan radian dan derajat jika benda tersebut menempuh lintasan dengan panjang busur 6 cm. Penyelesaian Dalam radian θ = s/R θ = 6 cm/80 cm θ = 0,075 rad konversi satuan tidak diperlukan karena memiliki satuan yang sama Dalam derajat θ = 0,07557,3° θ = 4,30° 2 Hubungan Antara Kecepatan Sudut dengan Kecepatan Linear v v = s ……………………… pers. 3 t Jika kita subtitusikan persamaan 2 ke persamaan 3, maka kita peroleh rumus kecepatan tangensial pada gerak melingkar sebagai berikut v = θ R …………………… pers. 4 t Karena θ/t = , maka persamaan 4 menjadi v = R ………..…………… pers. 5 Keterangan v = kecepatan tangensial m/s = kecepatan anguler rad/s t = selang waktu s R = jari-jari lingkaran m Persamaan 5 inilah merupakan rumus hubungan antara kecepatan linear/tangensial dengan kecepatan sudut anguler. Contoh Soal 2 Sebuah balok kecil berada di tepi meja putar yang berjari-jari 0,4 m. Mula-mula meja berputar dengan kecepatan sudut 20 rad/s. Karena mengalami percepatan maka kecepatan sudutnya berubah menjadi 50 rad/s setelah bergerak selama 15 s. Berapakah kecepatan linear awal dan akhir balok tersebut? Penyelesaian Diketahui R = 0,4 m 0 = 20 rad/s = 50 rad/s t = 15 s. Ditanya kecepatan linear awal v0 dan kecepatan linear akhir v v0 = 0 × R v0 = 20 × 0,4 v0 = 8 m/s v = × R v = 50 × 0,4 v = 20 m/s 3 Hubungan Antara Percepatan Sudut α dengan Percepatan Linear at at = v ……………………… pers. 6 t Jika kita subtitusikan persamaan 5 ke persamaan 6, maka kita peroleh rumus percepatan tangensial pada gerak melingkar sebagai berikut at = R …………………… pers. 7 t Karena /t = α, maka persamaan 7 menjadi at = αR ………..…………… pers. 8 Keterangan at = percepatan tangensial m/s2 α = percepatan anguler rad/s2 R = jari-jari lingkaran m Persamaan 8 inilah merupakan rumus hubungan antara percepatan linear/tangensial dengan percepatan sudut anguler. Contoh Soal 3 Dari contoh soal 2, tentukan percepatan tangensial balok! Penyelesaian Untuk menghitung percepatan tangensial, kita harus mengetahui dahulu nilai percepatan anguler dari balok tersebut yaitu dengan menggunakan rumus sebagai berikut α = – 0/t α = 50 – 20/15 α = 2 rad/s2 Dengan menggunakan persamaan 8, maka besar percepatan tangensial yang dialami balok adalah sebagai berikut at = αR at = 2 × 0,4 = 0,8 m/s2 4 Hubungan Antara Kecepatan Sudut dengan Percepatan Sentripetal as Dalam gerak melingkar beraturan GMB, percepatan sentripetal atau percepatan radial dirumuskan sebagai berikut as = v2 ……………………… pers. 9 R Jika kita subtitusikan persamaan 5 ke persamaan 9, maka kita peroleh rumus percepatan radial pada gerak melingkar sebagai berikut as = R2 R as = 2R ……………… pers. 10 Keterangan as = percepatan sentripetal m/s2 = kecepatan anguler rad/s R = jari-jari lingkaran m Persamaan 10 inilah merupakan rumus hubungan antara percepatan sentripetal pada besaran linear dengan kecepatan sudut pada besaran sudut. Contoh Soal 4 Sebuah titik berada di tepi sebuah CD yang berjari-jari 4 cm. CD tersebut berputar di dalam CD Player dengan kecepatan sudut 3 rad/s. Tentukan percepatan sentripetal pada titik tersebut! Penyelesaian Diketahui R = 4 cm = 0,04 m = 3 rad/s maka dengan menggunakan persamaan 10, percepatan sentripetal titik tersebut adalah as = 2R as = 32 × 0,04 as = 0,36 m/s2 atau 36 cm/s2 5 Hubungan Antara Periode T, Frekuensi f dengan Percepatan Sentripetal as Ketika suatu benda melakukan gerak melingkar satu kali putaran penuh maka besar sudut tempuhnya adalah θ = 2π, dimana waktu untuk melakukan satu kali putaran adalah periode T, sehingga kecepatan sudut dirumuskan sebagai berikut = 2π ……………………… pers. 11 T Jika persamaan 11 kita subtitusikan ke persamaan 10, maka rumus percepatan sentripetal akan menjadi seperti di bawah ini. as = 2π/T2R as = 4π2R ……………………… pers. 12 T2 Karena 1/T = f, maka persamaan 12 dapat kita tuliskan sebagai berikut as = 4π2f2R ……………………… pers. 13 Keterangan as = percepatan sentripetal m/s2 T = periode s f = frekuensi Hz R = jari-jari lingkaran m Persamaan 12 dan persamaan 13 merupakan rumus hubungan antara percepatan sentripetal atau percepatan radial dengan periode dan frekuensi gerak melingkar. Contoh Soal 5 Sebuah piringan hitam sedang berputar dengan kecepatan sudut 30 rpm. Berapakah percepatan sentripetal sebuah titik putih yang berada 5 cm dari pusat piringan tersebut? Penyelesaian Diketahui = 30 rpm = 30/60 putaran/s = 0,5 putaran/s R = 5 cm = 0,05 m Ditanya as as = 4π2f2R f = 0,5 Hz frekuensi di definisikan sebagai jumlah putaran per detik as = 4 × 3,142 × 0,52 × 0,05 as = 0,49 m/s2. Dengan demikian jika semua persamaan atau rumus hubungan antara besaran sudut anguler dengan besaran linier tangensial kita kumpulkan jadi satu, maka kita peroleh penting dalam kinematika gerak melingkar, yaitu sebagai berikut Nama Besaran Rumus Panjang Busur Lintasan s = θR Kecepatan Linear Tangensial v = R Percepatan Linear Tangensial at = αR Percepatan Sentripetal radial as = 2R as = 4π2R T2 as = 4π2f2R Demikianlah artikel tentang hubungan antara besaran sudut anguler dengan besaran linear tangensial pada gerak melingkar. Semoga dapat bermanfaat untuk Anda. Terimakasih atas kunjungannya dan sampai jumpa di artikel berikutnya.
Teropong bintang disebut juga teropong astronomi mempunyai fungsi untuk mengamati benda langit. Benda langit yang diamati menggunakan teropong bintang akan terlihat lebih dekat dan lebih besar. Kondisi ini dapat terjadi karena teropong bintang menggunakan lensa yang dapat menghasilkan bayangan benda yang lebih besar. Seberapa besar bayangan benda yang dihasilkan dapat diketahi melalui perhitungan menggunakan rumus perbesaran teropong bintang M. Besar bayangan benda yang dihasilkan teropong bintang dan panjang teropong dipengaruhi panjang fokus lensa yang digunakan. Bagaimana persamaan yang berlaku pada rumus perbesaran teropong bintang? Apa hubungan panjang lensa yang digunakan dengan panjang teropong? Sobat idschool dapat mencari tahu jawabannya melalui ulasan di bawah. Table of Contents Proses Pembentukan Bayangan pada Teropong Bintang Mata Berakomodasi Maksimum Mata Tak Berakomodasi Rumus Perbesaran Teropong Bintang M dan Panjang Teropong d Contoh Soal Perbesaran Teropong Bintang dan Pembahasan Contoh 1 – Soal Pembentukan Bayangan pada Teropong Bintang Contoh 2 – Soal Perbesaran Teropong Bintang Contoh 3 – Soal Perbesaran Teropong Bintang Proses Pembentukan Bayangan pada Teropong Bintang Teropong bintang menggunakan dua buah jenis lensa konvergen atau lensa cembung lensa positif sebagai lensa obyektif dan lensa okuler. Lensa obyektif adalah bagian lensa yang dekat dengan obyek atau benda yang diamati, sedangkan lensa okuler adalah bagian lensa yang dekat dengan mata pengamat. Proses pembentukan bayangan pada teropong bintang merupakan kombinasi proses pembentukan bayangan dengan dua lensa cembung. Lensa obyketif pada teropong bintang digunakan untuk menangkap sinar yang dipancarkan atau dipantulkan oleh benda langit. Benda yang di amati terletak sangat jauh sob = ∞ sehingga lensa obyektif akan menghasilkan bayangan di titk fokus lensa obyektif. Bayangan benda yang dibentuk lensa obyektif bersifat nyata, terbalik, dan diperkecil. Bayangan dari lensa obyektif dipandang sebagai benda oleh lensa okuler, yang selanjutnya bayangan benda oleh lensa obyektif akan dibiaskan dengan dua kondisi pengamatan oleh lensa okuler. Kedua jenis pengamatan tersebut adalah pengamatan dengan mata berakomodasi maksimum dan mata tak berakomodasi. Mata Berakomodasi Maksimum Lensa okuler akan membentuk bayangan benda melalui sinar istimewa yang dimiliki lensa cembung. Benda bagi lensa okuler adalah hasil bayangan benda yang dibentuk lensa obyektif. Sinar istimewa dari lensa okuler akan mebiaskan bayangan benda tersebut menjadi bayangan benda yang baru. Bayangan benda oleh lensa obyektif terletak antara pusat lensa dan fokus lensa okuler ruang I. Benda yang terletak pada ruang I lensa cembung mempunyai bayangan benda dengan sifat maya, tegak, dan diperbesar. Proses pembentukan bayangan pada teropong bintang pada mata berakomodasi maksimum diberikan seperti berikut. Hasil akhir bayangan yang diamati oleh mata adalah hasil bayangan oleh lensa okuler dengan sifat terbalik dan diberbesar. Pengamatan pada teropong bintang dengan mata berakomodasi maksimum terjadi saat bayangan yang dibentuk lensa okuler jatuh di titik dekat mata sok’ = –sn. Beberapa catatan yang perlu diperhatikan pada proses pembentukan bayangan pada teropong bintang untuk mata berakomodasi maksimum Jarak bayangan oleh lensa obyektif jatuh tepat di titik fokus lensa obyektif sob’ = fobBayangan benda oleh lensa okuler jatuh di titik dekat mata sok’ = –snPanjang teropong sama dengan penjumlahan panjang fokus lensa obyektif fob dan jarak bayangan benda lensa obyektif ke lensa okuler sok. Baca Juga Rumu Kekuatan Lensa Cembung + dan Lensa Cekung - Mata Tak Berakomodasi Pengamatan menggunakan teropong bintang dengan mata tak berakomodasi terjadi saat kondisi mata rileks atau tidak sedang konsentrasi penuh. Pada pengamatan dengan mata tak berakomodasi, letak titik fokus lensa obyektif berimpit dengan titik fokus lensa okuler. Sehingga, jarak bayangan benda oleh lensa obyektif ke lensa okuler sama dengan panjang fokus lensa okuler. Bayangan benda oleh lensa obyektif terletak tepat di titik fokus lensa okuler. Benda yang terletak di titik fokus lensa cembung menghasilkan bayangan benda nyata, terbalik, di jauh tak hingga. Pembentukan bayangan pada teropong bintang dengan mata tak berakomodasi dapat dilihat seperti berikut. Pengamatan menggukan teropong bintang dengan mata tak berakomodasi menghasilkan bayangan akhir pada titik jauh mata sok’ = ∞. Pada gambar proses pembentukan bayangan menunjukkan dua buah sinar pantul yang sejajar. Beberapa catatan yang perlu diperhatikan pada proses pembentukan bayangan pada teropong bintang untuk mata berakomodasi maksimum Jarak bayangan oleh lensa obyektif jatuh tepat di titik fokus lensa obyektif sob’ = fobTitik fokus lensa obyektif berimpit dengan titik fokus lensa okuler Fob = FokJarak bayangan oleh lensa obyektif ke lensa okuler sama dengan panjang fokus lensa okuler sok = fokBayangan benda oleh lensa okuler jatuh di tak hingga sok’ = ∞Panjang teropong sama dengan penjumlahan panjang fokus lensa obyektif fob dan panjang fokus lensa okuler fok. Baca Juga Pembentukan Bayangan pada Mikroskop Rumus Perbesaran Teropong Bintang M dan Panjang Teropong d Teropong bintang membantu kita mengumpulkan cahaya-cahaya yang tidak jatuh ke mata kita, memfokuskannya, dan mengarahkan langsung ke mata. Benda yang diamati terletak pada jarak tak terhingga sob = ∞ sehingga memenuhi persamaan sob’ = fob. Dengan kata lain, bayangan oleh lensa objektif terletak di titik fokus lensa obyektif bagian belakang. Bayangan pada lensa okuler pada pengamatan dengan mata berakomodasi maksimum terletak di dekat maka sok’ = –sn. Sehingga, lensa okuler berlaku persamaan seperti berikut. Total perbesaran teropong bintang merupakan perbesaran anguler yaitu perbandingan sudut penglihatan menggunakan teropong bintang dengan sudut penglihatan tanpa teropong. Rumus perbesaran teropong bintang dapat diketahui melalui perhitungan menggunakan persamaan berikut. Dari hasil akhir persamaan M = fob/fok dapat diperoleh dua rumus perbesaran teropong bintang. Dua bentuk rumus perbesaran teropong bintang digunakan untuk kondisi mata berakomodasi maksimum dan mata tak berakomodasi. KeteranganM = perbesaran bayanganfob = panjang fokus lensa objektiffok = panjang fokus lensa okulersn = titik dekat mata normal sn = 25 cmsok = jarak bayagan benda oleh lensa obyektif ke lensa okuler Baca Juga Cara Menghitung Perbesaran Bayangan Benda yang Dihasilkan Mikroskop Contoh Soal Perbesaran Teropong Bintang dan Pembahasan Beberapa contoh soal di bawah dapat digunakan untuk menambah pemahaman bahasan materi di atas. Setiap contoh soal yang diberikan dilengkapi dengan pembahasan bagaimana menggunakan rumus perbesaran teropong bintang. Sobat idschool dapat menggunakan pembahasan tersebut sebagai tolak ukur keberhasilan mengerjakan soal. Selamat Berlatih! Contoh 1 – Soal Pembentukan Bayangan pada Teropong Bintang Jarak titik api lensa obyektif dan okuler dari teropong bintang berturut-turut adalah 150 cm dan 30 cm. Diketahui bahwa teropong bintang dipakai oleh mata normal yang tidak berakomodasi, panjang teropong itu adalah ….A. 210 cmB. 180 cmC. 150 cmD. 120 cmE. 30 cm PembahasanBerdasarkan keterangan yang diberikan pada soal dapat diperoleh informasi-informasi seperti berikut. Jarak titik api lensa obyektif fob = 150 cmJarak titik api lensa okuler fok = 30 cmJenis pengamatan tidak berakomodasi Panjang teropong bintang d = fob + fokd = 150 + 30d = 180 cm Jadi panjang teropong itu adalah 180 B Contoh 2 – Soal Perbesaran Teropong Bintang Perhatikan gambar! Perbesaran teropong untuk mata tidak berakomodasi berdasarkan gambar di atas adalah ….A. 14,5 kaliB. 12,5 kaliC. 11,5 kaliD. 10,5 kaliE. 9,5 kali Baca Juga Pembentukan Bayangan pada Mata PembahasanBerdasarkan keterangan yang diberikan pada soal dapat diperoleh beberapa informasi berikut. Panjang fokus lensa obyektif fob = 100 cmPanjang fokus lensa okuler fok = 8 cmJenis teropong yang digunakan teropong bintang, karena tersusun dari dua lensa cembung/lensa konvergenPengamatan dilakukan dengan mata tak berakomodasi akomodasi minimum DitanyaPerbesaran teropong bintang M? Menghitung perbesaran total yang dihasilkan teropong M = fob/fok M = 100/8 M = 12,5 kali Jadi, perbesaran teropong bintang untuk pengamatan dengan mata tidak berakomodasi berdasarkan gambar di atas adalah 12,5 B Contoh 3 – Soal Perbesaran Teropong Bintang PembahasanBerdasarkan keterangan yang diberikan pada soal dapat diperoleh informasi-informasi seperti berikut. Jarak antara lensa obyektif dan okuler l = 126 cmPanjang fokus lensa okuler fok = 6 cmPanjang fokus lensa obyektif fob = 120 cm Pada gambar proses pembentukan bayangan pada teleskop di atas dihasilkan garis lurus sejajar yang berarti bayangan pada jarak tak berhingga. Kondisi tersebut menunjukkan bahwa pengamatan dilakukan dengan mata tak berakomodasi atau akomodasi minimum. Menghitung perbesaran aguler total yang dihasilkanM = fob/fokM = 120/6 = 20 kali Jadi, informasi yang diperoleh adalah cara pengamatan akomodasi minimum tak berakomodasi dan perbesaran teropong bintang 20 B Demikianlah tadi ulasan bagaimana cara mengetahui seberapa perbesaran teropong bintang dan panjangnya. Terima kasih sudah mengunjungi idschooldotnet, semoga bermanfaat! Baca Juga Sifat Bayangan Benda yang Dihasilkan Cermin Datar
alihteknologi pembuatan teropong bintang sederhana untuk Download Sehah et al., Alih Teknologi Pembuatan Teropong Sederhana maka lensa okuler dapat diatur sedemikian rupa sehingga bayangan akhir dari lensa okuler berada pada jarak tak terhingga (Sok′ = ~).
Coba deh kamu pergi ke lapangan luas, lalu lihat ke sekitar. Seberapa jauh kamu bisa memandang? Ketika kamu melihat pohon di kejauhan, pasti akan kelihatan sangat keciiiiil. Eh, begitu kamu deketin pohonnya, ternyata ukurannya besar. Kok bisa gitu ya? Hal ini, disebabkan oleh perspektif. Lalu, sekarang coba, deh, kamu tengok ke langit. Apa yang kamu lihat? Kalo yang kamu liat jemuran warga, geseran dikit dong. Jemuran sumber Saat kita menatap langit, apalagi di malam hari, pasti hanya terlihat cahaya titik-titik putih. Sama halnya dengan perspektif tadi, titik putih yang sangat kecil ini, ternyata ukuran aslinya besaaar banget. Nah, titik-titik kecil di langit itu, sebenarnya bisa kita lihat dengan alat bantu. Namanya, teleskop atau teropong bintang. Teropong bintang biasanya digunakan oleh para astronomer untuk mencari planet baru. Di alat ini, terdapat dua buah lensa cembung, yaitu lensa objektif yang berada di depan, yang menerima cahaya langsung dari objek. Dan lensa okuler, yaitu lensa yang berada dekat dengan pengamat. Cara kerja teropong bintang adalah dengan metode “pengumpulan cahaya”. Sekarang bayangkan di rumah kamu sedang turun hujan. Lalu, kamu ambil ember dan tampung air hujannya. Pasti, deh, semakin besar ember yang kamu pakai, air yang kamu tampung juga semakin banyak. Nah, prinsip kerja teropong bintang kurang lebih kayak gitu. Tapi yang ditampung bukan air, melainkan cahaya. Tampungan air hujan seperti cara mata dan teropong bintang bekerja sumber Oke, kalau masih bingung. Kita mundur sedikit mengenai cara mata kita bekerja. Sejatinya, mata kita sama kayak “ember” yang menampung air hujan tadi. Bedanya, si air adalah “cahaya” yang ada di sekeliling kita dan ember yang menampung cahayanya adalah pupil mata kita. Cahaya-cahaya yang masuk ke dalam pupil, pada akhirnya ngebuat kita bisa melihat sekitar. Pupil mata sumber Masalahnya, karena ukuran pupil mata kita kecil, cahaya yang masuk hanya sedikit. Teropong bintang, membantu kita mengumpulkan cahaya-cahaya yang tidak jatuh ke mata kita, memfokuskannya, dan mengarahkannya langsung ke mata. Anggap “ember penangkap cahaya” itu diberi lorong, dan di sana, cahaya-cahaya itu dikumpulkan, difokuskan, dan dikirim langsung menuju ke mata kita. Banyaknya jumlah cahaya yang dikumpulkan, tergantung dari area lensa teropong bintang yang kita lihat. Itu artinya, kalau kamu mengubah diameter teropong bintangnya menjadi dua kali lipat lebih besar, kita bakalan dapet cahaya sebanyak 4 kali lipat lebih banyak. Bagaimana Teropong Bintang Bisa Mengumpulkan Cahaya? Oke, sekarang bagaimana caranya si teropong bintang mengumpulkan cahaya supaya bisa masuk ke pupil mata kita? Bukan. Kamu jangan bayangin teropong bintang ini memungut cahaya kayak orang mungut recehan di jalan. Tetapi, membengkokkan cahaya yang ada di sekitar, dan mengarahkannya ke dalam teropong bintang. Mengumpulkan uang receh sumber Cara kerja teropong bintang itu mengubah arah cahaya dari suatu benda. Ya, cahaya selalu akan “berubah” arah apabila pindah dari satu medium ke medium lain. Itu lah kenapa kalau kamu memasukkan sendok ke dalam air, mata kita melihat seolah si sendok itu “patah” atau bengkok. Sendoknya gakpapa, tapi cahaya yang kita lihat bengkok, sehingga membentuk gambaran di kepala kita bahwa sendok yang ada di air itu “berbeda” karena cahayanya belok. Baca juga Avengers Infinity War dan Mengapa Butuh Kostum Baru Spiderman Pembiasan cahaya pada sendok yang masuk ke dalam air sumber Teropong bintang, membelokkan cahaya yang ada di sekitar, mengumpulkannya, dan mengirimnya ke mata kita. Alhasil, planet dan berbagai benda angkasa lain bisa keliatan, deh. Teropong bintang membelokkan cahaya sumber Penggunaan teropong bintang ini bisa dilakukan saat mata berakomodasi maksimum dan saat mata tidak berakomodasi. Kita coba bahas satu per satu ya. Mata Berakomodasi Maksimum Sumber Mata berakomodasi maksimum maksudnya adalah kondisi kita melihat teleskop dengan menggunakan mata yang terbuka lebar. Pandangan fokus. Dan konsentrasi tinggi. Kalau dalam serial Naruto, mungkin bakal begini nih. p sumber Saat mata berakomodasi maksimum, syaratnya ada dua 1. Sob = tak terhingga 2. S’ok = -Sn Sob = jarak benda ke lensa objektif S’ok = jarak bayangan ke lensa okuler Sn = jarak baca normal biasanya di soal 25-30cm Akibat Sob = tak hingga, maka fob = titik fokus lensa objektif Di teropong bintang, pasti ada yang namanya perbesaran lensa. Hal itu bisa kita dapatkan dengan M = Perbesaran teropong bintang α = Sudut pengamat ke bintang tanpa teropong o Β = Sudut pengamat ke bintang dengan teropong o Persamaan ini bisa kita sederhanakan menjadi; h = tinggi objek m Karena S’ob = fob, maka; Lalu, bagaimana cara untuk mencari panjang teleskop? Bisa kita temukan dengan menggunakan rumus berikut Karena S’ob = fob, maka hal ini juga berarti d = panjang teropong bintang m S’ob = Jarak bayangan ke lensa objektif Sok = Jarak benda ke lensa okuler Mata Tidak Berakomodasi Sumber Kondisi mata tidak berakomodasi adalah saat di mana pandangan mata kita tidak berada dalam kondisi “penuh konsentrasi”. Untuk penghitungan rumusnya, terdapat dua syarat juga 1. S’ok = tak hingga 2. S’ob = fob fob = titik fokus lensa objektif S’ob = jarak bayangan ke lensa objektif Dari kedua syarat itu, kita dapat turunkan rumusnya menjadi Karena S’ok tak hingga, maka; Lalu, untuk penghitungan perbesaran lensa teleskopnya; Karena S’ob = fob, maka; Di sisi lain, cara untuk menghitung panjang teleskop adalah Karena S’ob = fob dari syarat dan Sok = fok dari penurunan rumus, maka; Nah, sekarang sudah tahu, kan, bagaimana cara teropong bintang bekerja? Kenapa pandangan mata kita terbatas, dan bagaimana cara untuk memperbesarnya. Kalau kamu tertarik dalam pembahasan mengenai rumus-rumus yang ada di dalamnya, langsung aja tonton penjelasan lengkapnya di ruangbelajar! Selain mendapat penjelasan, kamu juga akan mendapat rangkuman infografik mengenai materi ini, lengkap dengan latihan soalnya, lho! TeropongBintang Pada saat mengamati objek terletak di sangat jauh, mata kita otomatis tanpa akomodasi, bayangan akan jatuh tepat di titik fokus lensa objektif dengan sifat nyata dan terbalik. Perbesaran Anguler atau Sudut (M) M = fob / fok Untuk menghitung perbesaran kita harus tahu jarak titik fokus lensa objektif dan jarak titik fokus lensaNah pada kesempatan kali ini kita akan mempelajari proses pembentukan bayangan, rumus perbesaran dan panjang dari teleskop bintang, teleskop Bumi, teleskop panggung, teleskop
Sebuahteropong bintang dengan panjang 50 cm digunakan untuk mengamati bintang dengan perbesaran 9 kali dengan mata tidak berakomodasi. Apabila pengamat kemudian hendak mengamati bintang dengan mata b
Apabilaada bagian-bagian yang belum kalian pahami, pelajarilah kembali sebelum melanjutkan pada bab berikutnya. dipakai melihat sebuah benda kecil yang berjarak 5 cm dari lup. Perbesaran anguler lup itu adalah . a. 2 kali. d. 5 kali. b. 4 kali. e. 6,25 kali Jarak titik api lensa objektif dan okuler dari teropong bintang berturut .